Ant Colony Optimization Approaches for the Sequential Ordering Problem

نویسنده

  • Ashraf Abdelbar
چکیده

We present two algorithms within the framework of the Ant Colony Optimization (ACO) metaheuristic. The first algorithm seeks to increase the exploration bias of Gambardella et al.’s (2012) Enhanced Ant Colony System (EACS) model, a model which heavily increases the exploitation bias of the already highly exploitative ACS model in order to gain the benefit of increased speed. Our algorithm aims to strike a balance between these two models. The second is also an extension of EACS, based on Jayadeva et al.’s (2013) EigenAnt algorithm. EigenAnt aims to avoid the problem of stagnation found in ACO algorithms by, among other unique properties, utilizing a selective rather than global pheromone evaporation model, and by discarding heuristics in the solution construction phase. A performance comparison between our two models, the legacy ACS model, and the EACS model is presented. The Sequential Ordering Problem (SOP), one of the main problems used to demonstrate EACS, and one still actively studied to this day, was utilized to conduct the comparison. Thesis Supervisor: Ashraf Abdelbar

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem

Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem

We present a new local optimizer called SOP-3-exchange for the sequential ordering problem that extends a local search for the traveling salesman problem to handle multiple constraints directly without increasing computational complexity. An algorithm that combines the SOP-3-exchange with an Ant Colony Optimization algorithm is described and we present experimental evidence that the resulting a...

متن کامل

ACO-Based Neighborhoods for Fixed-charge Capacitated Multi-commodity Network Design Problem

The fixed-charge Capacitated Multi-commodity Network Design (CMND) is a well-known problem of both practical and theoretical significance. Network design models represent a wide variety of planning and operation management issues in transportation telecommunication, logistics, production and distribution. In this paper, Ant Colony Optimization (ACO) based neighborhoods are proposed for CMND pro...

متن کامل

A CONSTRAINED SOLID TSP IN FUZZY ENVIRONMENT: TWO HEURISTIC APPROACHES

A solid travelling salesman problem (STSP) is a travelling salesman problem (TSP) where the salesman visits all the cities only once in his tour using dierent conveyances to travel from one city to another. Costs and environmental eect factors for travelling between the cities using dierent conveyances are dierent. Goal of the problem is to nd a complete tour with minimum cost that damages the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013